

Product Data

Castrol Molub-Alloy 4086

High-performance bearing grease

Description

Castrol Molub-Alloy[™] 4086 high-performance bearing grease is a heavy-duty all-weather grease manufactured from high-quality components, carefully selected for their compatibility with Molub-Alloy lubricating solids. Molub-Alloy 4086 has good film strength and is formulated to protect against friction and wear under heavy loading due to a proprietary blend of Molub-Alloy solid lubricants.

Application

Castrol Molub-Alloy 4086 is designed for industries with applications most commonly requiring the heavy-duty, all-weather capabilities of this range including steel, mining, logging, chemical and construction. It is particularly useful where conditions require sealing against outside contaminants such as dust and water.

The Molub-Alloy 4086 range operates effectively in plain, journal, and antifriction bearings. They exhibit adhesive and cohesive characteristics and are resistant to mechanical shearing. Typical applications are in ball and roller bearings, bushings, slides, screws and general lubrication where loads may be heavy and speeds low.

Molub-Alloy 4086/460-1 grease is Bucyrus certified (with lubricating solids <5% by weight and $<10~\mu m$ max particle size).

Molub-Alloy 4086 bearing grease can be applied by any standard grease dispensing method.

Advantages

- Excellent friction reduction characteristics due to Molub-Alloy solid lubricants easier start-up, reduced heat, and reduced energy leading to longer bearing life.
- Excellent EP and anti-wear properties protects equipment against extreme/shock loading and helps minimize bearing component wear and therefore extends equipment life.
- Excellent mechanical stability and adhesion the grease keeps its consistency in service ensuring long-term protection and reduced consumption as film stays between lubricated surfaces.
- Good water resistance the coating film stays on the surface in the presence of water even when exposed to the action of hot and chemically active process water.
- Outstanding oxidation and thermal stability provides reliable performance and extended lubricant life in high-temperature applications.

Typical Characteristics

Test	Method	Units	*4086-0	*4086-1	*4086-2	4086/320-1	4086/460-1	4086/460-2
Appearance, Visual	-	-	Dark grey					
Thickener Type	-	-	Lithium complex	Lithium complex	Lithium complex	Lithium complex	Lithium Complex	Lithium Complex
Base Oil Type	-	-	Mineral oil					
NLGI Grade	-	-	0	1	2	1	1	2
Density @ 20°C/68°F	ASTM D1475	g/ml	0.940	0.890	0.890	0.886	0.887	0.896
Worked Penetration, 60 Strokes @ 25°C/77°F	ISO 2137 ASTM D217	0.1mm	355-385	310-340	265-295	310-340	310-340	265-295
Worked Penetration, 100,000 Strokes @ 25°C/77°F, change from 60 Strokes	ISO 2137 ASTM D217	0.1 mm	20	15	15	20	20	15
Dropping Point	ISO 2176 ASTM D2265	°C/°F	260+/500+	260+/500+	260+/500+	260+/500+	260+/500+	260+/500+
Base Oil Viscosity @ 40°C/104°F @ 100°C/212°F	ISO 3104 ASTM D445	mm²/s	164 12.3	164 12.3	164 12.3	316 23.2	454 29.6	454 29.6
Rust Test, 48 hrs @ 52°C/126°F	ASTM D1743	Rating	Pass	Pass	Pass	Pass	Pass	Pass
Copper Corrosion, 24 hrs, 100°C/212°F	ISO 2160 ASTM D4048	Rating	1b	1b	1b	1b	1b	1b
Four Ball EP Test Load Wear Index Weld Load	ASTM D2596	kg	50 315	65 400	65 400	60 400	60 400	60 400
Four Ball Wear Test (1 hr, 20 kg, 1800 rpm, 54°C/130°F), Scar Diameter	ASTM D2266	mm	0.50	0.45	0.45	0.45	0.45	0.45
Timken EP Test, OK Load	ASTM D2509 IP 326	kgs/lbs	25/55	27/60	27/60	27/60	27/60	29.5/65
Water Washout @ 38°C/100°F @ 79°C/175°F	ASTM D1264	% loss	-	- 5	- 5	- 6	2.5 4	- 4
Roll Stability, 2 hours, 25°C/77°F, Penetration Change	ASTM D1831	% change	5	5	5	6	4	4
Wheel Bearing Test (6 hours @ 104°C/219°F)	ASTM D1263	% loss	-	-	-	-	1.92	-
Pressure Oil Separation (Cake Penetration)	US Steel	% change	14.25	-	-	-	14.75	-
Grease Mobility	US Steel	Grams/sec	0.2 @ 0°F	-	-	-	0.1 @ 0°F	-
Lincoln Ventmeter	US Steel	psi	400 @ -20°F	400 @ 10°F	400 @ 20°F	580 @ 0°F	550 @ 20°F	475 @ +30°F
ISO Classification	ISO 6743/9	-	-	-	-	L-XCDEB 1	L-XBDEB 1	L-XBDEB 2

^{*} Currently available in US, Canada and Mexico. Please contact your local Castrol representative to check availability in other areas. Subject to usual manufacturing tolerances.

Additional Information
In order to minimize potential incompatibilities when converting to a new grease, all previous lubricant should be removed as much as possible prior to operation. During initial operation, relubrication intervals should be monitored closely to ensure all previous lubricant is purged.
Castrol Molub-Alloy 4086
27/10/2006, version 1.0 Castrol, Molub-Alloy and the Castrol logo are trademarks of Castrol Limited. Used under license.
All reasonable care has been taken to ensure that the information contained in this publication is accurate as of the date of printing. However, such information may, nevertheles be affected by changes in the blend formulation occurring subsequent to the date of printing. Material Safety Data Sheets are available for all Castrol Ltd products. The MSDS must be consulted for appropriate information regarding storage, safe handling and disposal of a product.

Castrol Industrial North America Inc. 150 West Warrenville Road, 605 3E Naperville, IL 60563 Tel: (877) 641 1600 Fax: (877) 648 9801